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In this paper we present a review of some of the methods currently 
used for solving the absorbing boundary problem for the two-dimen- 
sional scalar wave equation. We show the relationship between the 
methods of Lindman and Clayton and Engquist. Through this rela- 
tionship we can derive discretizations of any rational approximation to 
the one-way wave equation. We prove that, for all the cases considered 
here, which can be solved in a manner similar to Lindman’s approach, 
the bo’unds imposed on the Courant number for stability at the bound- 
ary are no more severe than the bound 1 /fi required for stability of the 
interior scheme. These bounds are, however, necessary but not 
sufficient. We also compare the methods reviewed numerically. It is 
demonstrated that Lindman’s scheme is no better than a sixth-order 
approximation of Halpern and Trefethen. For low-order approxima- 
tions, Higdon’s one-dimensional equations are satisfactory, but as the 
order increases the two-dimensional form of the equations, as derived 
by Halpern and Trefethen, is preferable. 0 1992 Academic PWS. INK. 

INTRODUCTION 

The numerical solution of the wave equation on an 
infinite domain requires that the domain be cut to obtain 
the computational domain. In this process artificial boun- 
daries are introduced. Ideally, these boundaries absorb all 
incident energy. The absorbing boundary problem thus 
involves imposing boundary conditions in a way that best 
realises this objective. There are many techniques for 
reducing the amount of the reflected energy. Cerjan et al. 
(1985) [l] considered enlarging the computational domain 
and applying a damping mechanism in the artificial part of 
the domain. Although effective, this method is costly, par- 
ticularly for extension to higher dimensions. Other techni- 
ques for reducing spurious reflection have been proposed by 
many authors including Higdon [8, lo], Smith [19], 
Goldstein [4], and Keller and Givoli [12]. Alternative 
approaches based on approximations to the one-way wave 
equation have been investigated by many authors, including 
Lindman [lS], Clayton and Engquist [2], and Halpern 
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and Trefethen [6]. These authors have solved an equation 
at the boundary derived from approximations to the one- 
way wave equation for which energy flows in one direction 
only. Here we will compare some of the results obtained 
using different equations at the boundary. Our purpose is to 
demonstrate that the choice of discretization of the equation 
is crucial for a stable scheme. 

In an earlier paper, Renaut and Petersen [ 163, compared 
the wide-angle absorbing boundary conditions of order two 
derived by Halpern and Trefethen [6]. These boundary 
conditions also include the familiar paraxial approximation 
of order two found by Clayton and Engquist [2]. The dis- 
cretization of these conditions that was adopted was the 
same form as that proposed by Clayton and Engquist [2]. 
Renaut and Petersen observed that although this discretiza- 
tion imposes no restriction on the Courant number, ratio 
time step to space step, for the paraxial equation this may 
not be the case for all other second-order conditions. There 
is a bound on the allowable Courant number, p, which is 
determined by the coefficients of the underlying rational 
approximation. In some cases this bound is more severe 
than the l/G bound imposed by the stability of the interior 
scheme. Here, we propose a discretization for which no 
restriction on p occurs due to the boundary scheme. 
Furthermore, we look at higher order approximations and 
find stable discretizations for the boundary equations. 

The schemes proposed here are compared with the 
boundary operators suggested by Higdon [S, lo]. In each 
case, equivalence between a Halpern and Trefethen [6] 
equation and a Higdon [8, lo] operator exists in terms of 
the theoretical reflection coefficient. The implementation is, 
however, quite different. Higdon’s operators are completely 
one-dimensional and are first-order approximations in 
space and time. The equations of Halpern and Trefethen 
are two-dimensional and are solved with second-order 
difference operators. Higdon [8, lo] performed a stability 
analysis of his operators and found an inequality which the 
coefficients must obey for stability. Here we find necessary 
bounds on the Courant number, in terms of the coefficients 
of the operators, above which stability is not possible. 

Lindman’s [14] approach is similar to that of Clayton 
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and Engquist [2] in that it involves an approximation to a 
function at the boundary. We review the derivation of 
Lindman’s scheme and show that it is actually very similar 
to Halpern and Trefethen’s ideas [6]. Randall [lS] 
demonstrated that Lindman’s scheme is more effective than 
the paraxial approximation for the solution of the elastic 
wave equation. This is not surprising because Lindman’s 
scheme amounts to a twelfth-order approximation as 
compared to the paraxial approximation which is second 
order. 

Higdon [S] conjectured that the third paraxial 
approximation requires an implicit discretization. We show 
that this is not the case. In fact, any of the Halpern and 
Trefethen [6] approximations can be reformulated in a 
Lindman-type setting for which an explicit difference 
operator is immediately available. It turns out that these 
operators are exactly those which we have investigated for 
the discretization of the higher-order approximations, for 
which the necessary condition for stability is no more severe 
than the stability condition of the interior scheme. 

Higdon [lo] observed that his schemes may exhibit 
instability when the operator is composed of three or more 
factors. This mild unstable behavior was stimulated by an 
accidental incompatibility in some of the numerical com- 
putations. In [S] it was shown that the incompatibility was 
more troublesome for low frequency data and arises due to 
the existence of generalized eigensolutions with frequency 
and wavenumber zero. We show in Section 5 that this 
generalized eigensolution also exists for the methods pre- 
sented here. In fact, it is found with any boundary condition 
containing derivatives and no undifferentiated terms, since 
a constant automatically satisfies the boundary condition. 
Furthermore, also in Section 5, we show that the methods 
in this paper do allow for generalized eigensolutions at 
other frequencies and wavenumbers. These are, therefore, 
again subject to incompatibility. In general the potential for 
incompatibility is reduced if fewer points away from the 
boundary are used in the approximation of the boundary 
condition. The methods we present here have the advantage 
of reducing this number, marginally, as compared to the 
boundary operators in [S]. Given the disadvantage of the 
greater number of generalized eigensolutions of the methods 
here it is not clear whether the operators in [8] or these here 
are more vulnerable to incompatibility. 

In Section 2 we review the derivation of the rational 
approximation to the one-way wave equation and present 
difference operators for approximations up to order six. In 
Section 3 we present the Higdon [S, lo] operators and 
in Section 4 we review Lindman’s [14] approach. The 
stability of the operators in Section 2 is considered in 
Section 5 and in Section 6 we compare all methods 
numerically. Section 7 is a short concluding section, in 
which the conclusions from the preceding theoretical and 
numerical investigations are given. 

The numerical computations demonstrate that the 
bounds on Courant number found in Section 5 are correct. 
Furthermore, difference schemes which are designed in a 
symmetric manner do not impose any restriction on the 
Courant number which is greater than that imposed by 
stability of the interior scheme. The existence of generalised 
eigensolutions is, however, not covered by our theory. 
Numerical searches show that in several cases these do exist 
but their effects are only seen in a scheme for which the 
operator is not symmetric in time. For minimal reflection 
the rational approximation approach in [2,6, 143 does not 
appear to be significantly better than the operator approach 
of Higdon [S, lo], but the fact that rational approximation 
uses fewer points perpendicular to the boundary may be 
advantageous for high-order approximations. Also a 
sixth-order rational approximation [6] performs about the 
same as the twelfth-order Lindman scheme. 

2. ONE-WAY WAVE EQUATIONS 

Consider the second-order wave equation 

u,, = CZ(%x + uyy) (2.1) 

for x >O, ye R, t >O, and u = u(x, y, t). The solutions of 
(2.1) are plane waves which travel in every direction in two 
dimensions. Substitution of 

U(X, y, t) = &wr + cx + tlv) (2.2) 

into (2.1), where o is the frequency and 5 and v are wave 
numbers leads to the dispersion relation 

co2 = c’(Ly + q2). (2.3) 

A wave with wave numbers 5 and r] travels at the velocity 
c( - r/o, -yl/o) = c( --OS 8, -sin e), where 8 is the angle 
measured counterclockwise from the positive x-axis of the 
normal to the wave. Suppose that there is an artificial 
boundary at x = 0. Ideally, this boundary should only allow 
those waves which travel to the left, 101 < 90”, to be 
propagated. Such waves satisfy the dispersion relation 

where s = qc/o = sin 0 E [ - 1, 11, and 8 E [ -9O”, 90’3. 
Equation (2.4) is the positive root of (2.3), and because of 
the square root it is not the dispersion relation of a partial 
differential equation. 

In order to nearly satisfy (2.4) at the boundary practical 
one-way wave equations are obtained by finding a rational 
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approximation r(s) = P,(s)/Q,(s) to the square root 
function. Here P, and Q, are polynomials of degree m and 
n in S, respectively. Then (2.4) is replaced by 

Ms) e=-..- 
c 

or, equivalently, 

” 
c V-6) 

j=O 

To clear the o in the denominator we multiply by the factor 
o”, K= max{n, m - 1 } and then we have the dispersion 
relation for the differential equation 

n m 

(2.7) 

To study the reflective properties of the differential equa- 
tion at the boundary, consider a wave which consists of 
both a leftgoing and a rightgoing part, 

where A, and A, are the amplitudes of the incident and 
reflected parts, respectively. This wave satisfies (2.7) at the 
boundary and therefore the ratio of A, to A, is given by 

AR 
AI=- 

[r(s) - Jl -s’] 

[r(s) + Ji7] 
(2.8) 

which is the reflection coefficient for (2.7). 
Now Trefethen and Halpern [23] proved that only the 

approximations with m = n or m = n + 2 lead to well-posed 
problems. Halpern and Trefethen [6] found approxima- 
tions r(s), where r(s) is assumed to be even, r(s) = r( --s), 
with m = n and m = n + 2 by a variety of techniques. The 
techniques that they used to find these approximations are 
fully defined in [6]. We have Iabelled the approximations 
according to the method of approximation that was used to 
find it, for example, the Padt approximations were found 
using PadC approximations for (2.5). In Table I we give the 
coefficients of these approximations for k = 1, . . . . 4, k = 
$ (m + n + 2). Note that because the only choices for m and 
n are m = n or m = n + 2 and because m and n are both even, 
the value of k determines m and n uniquely. When m = n, k 
is odd, k=n+ 1, and when m=n+2, k is even, k=n+2. 
The coellicients that are not listed in Table I are, therefore, 
zero, except q. = 1 in every case. These correspond to 
approximations with order 0,2,4, and 6, respectively. Their 
reflection coefficients are drawn in Fig. 1. 

TABLE I 

Coefficients of One-Way Wave Equations 

Chebyshev Newman 
k Pad& L,” points L2 C-P points L” 

1 1.00000 0.99240 0.70711 0.78540 0.63662 0.00000 0.50000 
0.00000 0.00000 O.OOOOO o.ooooo o.ooooo 0.00000 o.ooooO 
000000 OooooO o.ooooO o.oomo o.ooooo ooooa 000000 
0.00000 iI6ziG o.ooooo o.ooooo o.ooooO 0.00000 0.00000 

2 1 .ocwo 1.30023 1.03597 1.03084 1.06103 1.OOOOO 1.12500 
-0.50000 -0.51555 -0.76537 -0.73631 -0.84883 -1.00000 -1.OOOOO 

o.ooooo o.ooooO o.ooooO o.oaooo o.ooooO o.ooooo o.oo4m 
0.00000 o.ooooO o.ooooO o.oomo o.ooo4M o.ooooo o.ooooO 

3 1 .oOOOO 0.99973 0.99650 0.99250 0.99030 1.ooooO 0.95651 
-0.75000 -0.80864 -0.91296 -0.92233 -0.94314 -1.OQOOO -0.94354 

01)0000 o.ooooO o.ooooO o.ooooo o.omoo o.ooooO 0.00000 
-025000 -0.31657 -0.47258 -0.51084 -0.55556 -0.66976 -0.70385 

4 l.ooooO 1.00015 1 BOO34 1.00227 1.00161 1 .oOim 1.01773 
-1.WOOO -1.16394 -127073 -1.37099 -1.37170 -1.48698 -1.59644 

0.12500 022308 029660 0.38178 0.38027 0.48698 0.57976 
-0.50000 -0.65974 -0.76017 -0.83407 -0.84000 -0.91384 -0.94301 

Note. Coefficients are listed in the pattern p,,, p2, p4, q2. 

Renaut and Petersen [ 16) compared the k = 2 equations 
which have differential equation 

U.XI =P; u,, + cp,u,. (2.9 1 

For p. = 1 and p2 = - f this is the second-order paraxial 
approximation for which Clayton and Engquist [2] 
proposed the discretization 

-p~~:D~(u:+,,+u~_,k)=O. (2.10) 

Here D”+ ,D4_, and Dfj are standard forward, backward, 
and central difference operators, z& is an approximation to 
u(j Ax, k dy, n At), Ax, dy are gridsizes in x and y direc- 
tions and At is the timestep. This operator has a truncation 
error O(dx’) + 0(At2) + O(dx At) because the first-order 
terms cancel. Renaut and Petersen [16] proved that 
p < -1/2p, is necessary for stability, where p = c At/Ax is 
the Courant number. For all but the PadC and L,” 
approximations this bound on p is more restrictive than the 
von Neumann stability bound p G l/d for the interior 
scheme when the standard live-point stencil for (2.1) is used: 

4+,,- 2u’,, + u’, _ Ik 

=~‘(~~:‘-4u’,,+u~;‘+u’,+,+u’,,_,). (2.11) 

We are now assuming a square grid Ax = Ay, as this 
simplifies the analysis to the point where it is manageable. 
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x ” x * I-infinity 

b ‘.OO -1 
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Angle 

FIG. 1. (a) Reflection coenicients for k = 2. (b) Reflection coefficients for k = 3. (c) Reflection coefficients for k = 4. 

From Fig. la it is apparent that the least squares, Observe that this operator is symmetric in time, whereas 
Chebyshev-Padi, and Chebyshev approximations give the (2.10) is not. We shall see that operators which are 
least reflection over a wide range of angles. The bound symmetric in time prove to have less restrictive bounds 

PC --U2P,> however, reduces the effectiveness of the on p. The stencils are given in Fig. 2. 
equation. This may be overcome by using an alternative Buneman [0] has also used Eq. (2.12). There are many 
operator. Another discretization which is also second order other ways to discretize (2.9); for example, we could use a 
in space and time is given by first-order operator: 

Dx D’u’ -POD’ D’ (u” +u’ ) + 0 nk 4. + - nk nk 
LC 0; D;uEk -$D: D’_ uII, - p2cDy, D{ uEk = 0. (2.13) 

-pfD.,D’(Ufk+U:k)=o. (2.12) 
We prove in Section 5 that (2.12) and (2.13) are stable only 
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n-l ” n+1 n-l n n+l 

I z t 2 
z .z z t t z I 2 t 2 t z 
z z t 2 

t=O a!=0 t=O +=o z=o t=O 

(2.10) (2.12) 

FIG. 2. Stencils for Eqs. (2.10) and (2.12). 

if p < Jp,j(p,l. These bounds are given in Table II. 
Observe that the bound on (2.12) is less restrictive than the 
von Neumann bound in all cases. In Section 6 we present 
numerical comparisons of these methods. 

The k = 3 and k = 4 equations have smaller reflection 
coefficients and thus we compare these equations with the 
k = 2 equations as well. To derive discretizations for k = 3 
and k = 4 we attempted to use the same ideas as for (2.12). 
We used central differencing for the second-order 
derivatives, a forward difference for the spatial first-order 
derivatives and a backward difference for the first-order 
time derivatives. To get a truncation error of O(dx’) + 

O(dt*) + O(dx At) we then averaged over space and time. 
For the k = 3 equation, 

cut,, + c3wyyx = PoUtrt + C2P*Uyv,, 

we have the operator 

(2.14) 

- c2 ‘; D’+ DY_ DI(& + u;,J = 0. 

For the k = 4 equation, 

(2.15) 

TABLE II 

Theoretical Bounds on Courant Number p 

Approximation Padk L$ 
Chebyshev 

points L2 C-P 
Newman 

points Lm 

Method 2.10 

1 -- 
2P2 

Methods 2.12 and 2.13 
Jp67i;;;i 

Method 2.15 
m 

JPol(P0q.z - P2) 

Method 2.17 

( 
&P*+JK) 

112 

~(P2-Pnql+\l(Poq1-Pz)‘+8PoPn 
> 

112 

4 

Method 4.10 
JPol(Poqz - PA 

-P2 -JX~ ‘I2 

2P4 > 

( (Pz - Po42)Po 

1 

l/Z 

PO P4 +P2(POqz - Pz) 

1.0 0.9698 0.6533 0.679 1 0.5890 0.5000 0.5000 

1.414 1.3929 1.1634 1.1832 1.1180 1 .oOOo 

1.1547 1.1119 1.0448 1.0373 1.0247 1 .oOOo 

1.4142 1.4254 1.5041 1.5517 1.5952 1.7401 

1.3409 1.2257 1.1657 1.1652 1.1160 1.0650 I .0334 

1.1118 1.0173 0.9685 0.9209 0.9225 0.8724 0.8385 

1.4142 1 A086 1.4001 1.3687 1.3743 

1.0824 1.0416 1.0195 1.0108 1.0084 

1 .I 547 1.1775 1.2047 1.2363 1.2380 

1.3209 1.2643 

1 .oOOO 1.0012 

1.2526 1.2327 

1.0607 

1.0068 

1.9234 
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n-2 n-1 ” n+l n-3 n-2 n-l n n+l 

I t I z 

z I I 2 I I z I t I 

I z 2 I I E z t I I I 2 I I f I I * 

z t z 2 E * I I * z 

0 t t I 

z=o z=o r=O 2=0 r=O r=O Jr= 0 z=o I= 0 

(2.15) (2.17) 

FIG. 3. Stencils for Eqs. (2.15) and (2.17). 
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the operator is 

-$ D’+(D’)3 (u;, + &) 

x (& + & + u;- *k + 24; _ 2k) = 0. (2.17) 

These stencils are illustrated in Fig. 3. 
Contrary to Higdon’s conjecture [8], we have found 

explicit schemes not only for k = 3 equations but also for 
k = 4 equations. Because of the increased order of the time 
derivative as k increases, extra time levels need to be stored 
at the boundary. The derivation of Eqs. (2.15) and (2.17) is 
tedious and the extension to k = 5 daunting. In Section 4 we 
show how to avoid this problem. 

As for (2.10), (2.12), and (2.13) we have investigated the 
stability of (2.15) and (2.17). The bounds on p for stability 
are reviewed in Table II. Note that all of the results pertain 
to the interior equation solved by (2.1 l), the five-point 
difference stencil. The relevance of these results to other 
interior schemes is discussed in Renaut [ 171. 

3. HIGDON’S OPERATORS 

Higdon [lo] introduced absorbing boundary conditions 
of the form 

[ ( 
fi COS aj;-+>l u=o, (3.1) 

i=l 

where laj 1 < 7c/2 for allj. This equation is satisfied exactly by 

any linear combination of plane waves travelling across 
x = 0 at angles of incidence f c1i, fa,, . . . . fa, with speed c. 
The reflection coefficient for (3.1) is given by 

R=fi 
( 

cos aj - cos e 
,=, > cOsaj+cOse ' 

(3.2) 

Therefore the angles aj can be chosen to distribute the zeros 
of R and thus optimize the absorption properties of (3.1). In 
this paper we choose the angles aj to match the interpolating 
angles of the absorbing boundary conditions in Section 2 as 
given in Table 5 of Halpern and Trefethen [4]. As shown 
by Higdon [lo] and Halpern and Trefethen [6] this gives 
methods with identical reflection coefficients. They are thus 
equivalent but are implemented differently. In fact we can 
go from any of the schemes described by (2.6) to Eq. (3.1) 
by replacing the second-order derivatives in y through 
U yy = (l/c2) u,, - uxx. In Section 6 we compare these 
equations numerically. 

Higdon [lo] suggests the first-order approximation 

co~a~D’(l+adxD”,)uj:+,, 

-cDx,[l-bdtD’] ~jl+~~=O (3.3) 

for each of the factors in (3.1). In one series of experiments 
the amount of reflected energy was minimal for a = b = 0.25. 
Observe, however, that a = b = 0.5 gives a second-order 
approximation to a factor of (3.1). We present results using 
both choices for a = b. According to Theorem 2, 
Higdon [lo] the operator (3.3) is stable if a < 4 when a = b, 
and there is no further restriction on p provided that the 
interior scheme is stable. Note also that he further observes 
that this restriction ad $ can be relaxed slightly when 
P < l/Jz [lOI. 

4. LINDMAN’S BOUNDARY CONDITION 

Lindman [14] is apparently the first person who con- 
sidered solving the absorbing boundary problem by the use 
of an approximation to the one-way wave equation at the 
boundary. Instead of approximating the square root in 

581/102!2-2 
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Eq. (2.4) he looked for an approximation 
square root 

4?z(s) 1 R(s)=-=- 
D,(s) J?? 

to the inverse 

(4.1) 

Here R(s) is constrained, however, to be of the form 

(4.2) 

which means that a, = d, = 1, and D,(S) = nr= 1 (1 - /3iS’). 
For general approximations R(s), we obtain a partial 
differential equation 

(4.3) 

where K= max{ m, n - 1 }. If none of the pi or cli are zero, 
m =n= 2N. Clearly Eq. (4.3) is the analogue of (2.7) in 
Section 2. Thus Lindman’s method corresponds to the 
solution of (4.3) for m = n = 6, where 

Observe also that by uniqueness, the Pade approxima- 
tions (4.1) satisfy A,(s) = Q,(s) and D,(s) = P,(s), where 
Q&s) and P,(s) are the polynomials of r(s) in Eq. (2.6). 

Lindman does not use (4.3) as the boundary condition. 
Instead he makes use of the term (4.2). If we insert (4.2) into 
the dispersion relation (2.4) we obtain 

i(o-(c)=i 5c 5 v2 ( j=Ic-@ . > (4.4) 

Then, associating iw, it, and iv with partial differentiation 
by t, x, and y, respectively, in the usual way, we obtain 

N 

ur-cu,=c c hi, (4.5) 
i=l 

Therefore, instead of solving (4.3) directly, Lindman solves 
a system of N + 1 equations at the boundary. The first 
of these is the normal incidence-absorbing boundary 
condition modified by the correction functions hi. These 
correction functions are the solutions of one-dimensional 
wave equations along the boundary. 

Since Eqs. (4.3) and (2.7) are similar we can use 
Lindman’s approach for the solution of the equations in 
Section 2. The rational function r(s) to the square root can 
be expressed in a Lindman form 

r(s)=p, l+ f clisz 
( > is 1 l -Bis2 ’ 

(4.6) 

where 2N = max{m, n}. Thus we can use this form in the 
dispersion relation (2.4) to give the system of equations 

N 

where 

i = 1, . ..) N, (4.7) 

that must be solved at the boundary. 
Equipped with this new formulation, it is much easier to 

find a difference approximation for Eqs. (4.3). Lindman 
solved the system (4.5) with the discrete approximation 

D’ + (uik+u&D; (U:+Ik+U:k)=C 5 (hi)z, 
2 2 (4.8) 

i=l 

where (hi)zk is an approximation to hi(O, k dy, n At). The 
second-order derivatives are approximated by a second- 
order central difference and the first-order derivatives by 
forward differences averaged over two levels. The equation 
for the hi has a truncation error O(dx)+ O(dt). In 
Section 6 we see that this does not degrade the results. 
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Therefore, we apply an equivalent difference scheme for 
Eqs. (4.7): 

(4.9) i=l 

=a,D: D’ D:c~(u~,~~~+&~~). 

For the k = 2 equation, T(S) = p0 + p2s2, Eqs. (4.9) give 
the same difference operator as (2.12), where a, = p2/po and 
/I1 = 0. The k = 3 equation also gives the operator (2.15), 
where a, = p2/po - q2 and /I1 = -q2. For k = 4, however, 
(4.9) leads to 

D:(W)* D;(ujj, + u:- ,k) 

+ q2c3DY 0: D’Dx+(& + u:p Ik) 

- poD’+(D’ )’ (& + d,) 

-p2c2DY D’,(D’)* (u:, + u;,, 

-P~(DY,DY)*(uII-~~+u~,_~~)=O (4.10) 

which differs from (2.17) in the last term. The stencil for 
(4.10) is illustrated in Fig. 4 and may be compared with that 
for (2.17) in Fig. 3. We prove in Section 5 that (4.10) and 
(2.17) may be stable but the results in Section 6 
demonstrate that (4.10) is superior. 

We stress that we do not suggest that Eqs. (4.9) be 
expanded and solved in the format of Section 2. For the 
sake of comparison we eliminated the variables h. It is, 
however, much easier to program (4.9) for k = 4 than (4.10). 
The form of (4.9) makes the use of higher order approxima- 
tions, i.e., larger k, a simple change that means incrementing 
a loop index rather than a completely new subroutine. It is 
not difficult to find the coefficients {ai, /Ii, i = 1, . . . . N} from 
the polynomial coefficients when m and n are small, as 
considered here. 

n-3 n-2 n-1 n n+l 

z z 

I z z I t I 

z + t t z z z 2 I t 

I I E P t 2 

z I 

t= 0 +=o r=O z=o r=O 

Fig. 4. Stencil for (4.10). 

5. STABILITY 

To find necessary conditions for stability for any 
boundary operator we use the Gustafsson, Kreiss, and 
Sundstrom [S] theory in the form explained by Higdon 
[S, lo]. Any of the boundary conditions considered here 
can be expressed in a operator format 

B(K, Y,P)ujj+,,=O, 

where B is a polynomial in the three variables K, Y, and Z 
which denote the forward shift operators with respect to x, 
y, and t, respectively. We use the stability criterion 

B(K, y, z-‘) #O whenever Izl b 1, llcl < 1, 

explained in Higdon [8, lo]. Physical interpretation of this 
condition is given by Higdon [S, lo] and Trefethen 
[21,22] and amounts to requiring that the boundary does 
not support waves which travel into the domain and are 
supported by the interior scheme. 

To find bounds on the Courant number for which a 
method may be stable we use the same approach as Renaut 
and Petersen [ 163. This involves writing the operator B as 
a polynomial in z -’ and finding conditions for which there 
are no roots satisfying jtc < 1 and lzl 2 1. To do this we use 
the theory of Schur transforms as described by Henrici [7]. 
Let p(z) be a polynomial of degree n, 

p(Z):=anzn+un-lZnP’+ ... +a,. 

Define the reciprocal polynomial of p by p*, 

p*(z)=aoz”+a,z”P’+ ... +a,. 

The polynomial T, defined by 

Tp(z) := a, p(z) - a,p*(z) 

is of degree n - 1 and is called the Schur transform of p. 
Furthermore, 

Tp(O)= luol*- IanI 

is always real. We can repeat the process to find the Schur 
transform of Tp, T’p. Note that the Schur transform of a 
polynomial of degree zero is the zero polynomial. Thus we 
have the iterated Schur transforms T”p defined by 

T”p := T( Tk - ‘p), k = 2, 3, ..,, n, 

and we can set y k := Tkp(0), k = 1, 2, . . . . n. Then quoting 
from Henrici [7] we have conditions on the yk for the zeros 
of p to lie outside the unit circle: 

THEOREM 6.8(b) (Henrici [7]). Let p be a polynomial 
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of degree n, p # 0. All zeros of p lie outside the unit disk 
IzI < 1 tf and only tf yk > 0, k = 1, 2, . . . . n. 

Considering B as a polynomial in W= z ~ ’ we obtain 
conditions for the zeros to satisfy 1 WI > 1 and thus (zl < 1, 
provided that 1~1 < 1. When IIC/ = 1 there can be no solu- 
tions of both the interior and the boundary operator which 
have IzI > 1, see Higdon [lo]. Roots with JKI = IzI = 1, 
however, may exist and need to be considered. 
Higdon [lo] showed that the wavelike solutions of (2.11) 
which have group velocity in the x-direction greater than 
zero and hence correspond to waves pointing into the 
domain satisfy arg IC arg z < 0. Therefore we need to deter- 
mine whether these solutions, called generalised eigensolu- 
tions of the second kind, also satisfy the boundary condi- 
tion. Physically these solutions correspond to waves radiat- 
ing spontaneously from the boundary into the interior. The 
GKS theory also does not allow solutions for which the 
group velocity is zero in the x-direction, generalised eigen- 
solutions of the first kind. These correspond to waves 
travelling up and down the boundary. In practice, however, 
we need to distinguish between the generalised eigensolu- 
tions of the first kind and of the second kind (cf. Kreiss [ 131 
and Higdon [9]). Trefethen [22] demonstrated that linear 
growth due to generalised eigensolutions of the second kind 
at one boundary is converted to exponential growth by 
repeated reflection at a second boundary. Instability due 
to eigensolutions of the first kind has not been widely 
observed. Higdon [S] reported incompatibility between 
initial and boundary data as a mechanism that might 
excite instability in the case of zero frequency generalized 
eigensolutions. In [lo] he reports how this zero frequency 
problem can be removed by adding positive constants to the 
boundary operator. Renaut and Petersen [16] also obser- 
ved instability due to incompatibility. Their experiments are 
repeated in Section 6 with the incompatibility removed and 
the instability is not excited. 

To analyse stability we consider waves that are 
oscillatory in y, so y = e iV dy Modes of the form &eiVYzn are . 
used in the stability theory because they arise from using a 
Fourier transform in the direction of the boundary and a 
Laplace transform in time. 

We now quote the results for each of the schemes 
considered in Section 2. These results are based on some 
assumptions about the coefficients of the approximations. 
We believe these assumptions are justified because they hold 
in all cases considered here. The proofs are given later in this 
section. 

THEOREM 5.1. The difference schemes given by 
Eq. (2.12) are stable in combination with Eq. (2.11) only if 

~~<JpoIJp21~ ?AY#O, 

assuming that p0 > 0 and p2 < 0. 

THEOREM 5.2. The difference schemes given by 
Eq. (2.13) are stable in combination with Eq. (2.11) only if 

assuming that p0 > 0 and p2 < 0. 

THEOREM 5.3. The difference schemes given by 
Eq. (2.15) are stable in combination with Eq. (2.11) only if 

provided that pZ - poq2 < 0, p. > 0, q2 < 0, and p2 < 0. 

THEOREM 5.4. The difference schemes given by 
Eq. (2.17) are stable in combination with Eq. (2.11) only if 

vAYZO, 

provided that poq2 - p2 > 0, p. > 0, p2 < 0, p4 > 0, q2 < 0, 
andp4 + qkw2 - ~2) < 0. 

THEOREM 5.5. The difference schemes given by 
Eq. (4.10) are stable in combination with Eq. (2.11) only if 

,u’ < min 
{ 

PO -P2 - JP; - 4Po P4 

PO42 - Pz? 2P‘l ’ 

(P2 - PO921 PO 

PoP4+P2(Po92-P2) 
vAYZO, 

provided that the conditions of Theorem 5.4. hold. 

The results of these theorems are summarized in Table II. 
Of course the bounds given in Table II are the maximum 
Courant numbers for which the boundary conditions can be 
stable. In those cases where this bound is larger than l/G, 
which is the bound on p for the interior scheme, the largest 
p that may be stably used is l/G. We show separately that 
in every case except (5.2) generalised eigensolutions may 
exist and that if they exist the reflection coefficient is less 
than one. In Table III we give the numerical stability 
conditions for comparison. Except for (5.4) these bounds 
are accurately predicted by the theoretical results. 

Proof of Theorem 5.1. For (2.12) the operator B is 

BJK-l)(l-z22) p,(l-2z-'+z-2)(1+Ic) 
2At Ax -z At2 

> 
(l+K)Z-‘. 
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Let b = p2p and a= pO/p; then we have an operator Proof of Theorem 5.2. For (2.13) the operator B is given 
quadratic in W = z - ‘, by 

B(K, w) = R(K) + s(K) W+ P(K) W2, B=(~-l)(z-z~‘)-2a(z-2+z-~)-26(~-2+~~’), 

where where a = pO/p and b = p2p. This is a quadratic equation as 
in Theorem 5.1 and we find that for stability we need 

R(K)=K-1-a(l+Ic) 

S(K)=2(a-a)(l+K) 
16(E + K - 2)2 &2a - 6) > 0 

P(K)= -[K- 1 +a(1 +K)]. which again gives p2 < p0/lp21 for rl dy # 0. 
For VI dy = 0 the pairs (K, z) are real and are either both 

To_simplify the algebra we have replaced b(cos ‘1 dy - 1) inside the unit circle or both outside the unit circle, unless 
by b. The iterated Schur transforms of B give K=Z=l. 1 

Yl= IR12- IPI2 
Proof of Theorem 5.3. For (2.15) the operator 

B(K, y, z-‘) leads to a cubic in W=zpl, 
y2=(IR12-lP(2)2-(IRS-PSI)2. 

B(W)=R(K)+S(K)W+T(K) W2+P(h-) W3, 

It can be shown that y,= -4a(]K]2-l)>0 for llcl<l, 
provided that p0 > 0. Since where 

Rs-PS=4(a-J)(IK12- l), R=K- 1 -a(1 +K) 

y2= 16(1~1*- 1)2g(2a--b”). s= -(K-l)+b(K-l)+ja(l+K)-c(l+K) 

For q dy#O, b”>O, provided that p2 ~0. Thus y2 >O if 
T= -(K- l)+b(K- l)-3a(l +K)+c(l +K) 

2a - b” > 0, which gives the condition p < ,/m. P=K-l+a(l+rc) 

When rl dy = 0 a pair (K, z), which is a solution at the 
boundary and the interior, satisfies and a = p,,/p, b = q2p2(y - 2 + y-‘), and c = 

p2 p( y - 2 + y ~ I). The first Schur transform of B is 

B(K, z-‘)=(K- l)(z-z-l) 
T(B)=IR12-IP(2+ W(ES-PT)+ W2(RT-PS). 

-$71+x)(;-2+z-‘)=O 
Therefore, y, = I RI2 - IPI* and, as in Theorem 5.1, 

and yl= -4a((K12-l)>O, provided K<l and pO>O. The 
analysis is simplified if we calculate the coefficients of T(B) 

z-2+2-’ =p’(K-2+KIc1). before finding the next Schur iterate. Now 

Thus RS-PT=2(lK12-1)(4a-c-ab) 

(~-1)(1-~-~)-p~~(1+~)(~-1)(1-~~‘)~~~=0 and 

and the pair (1, 1) is a solution. Therefore B( 1, 1) = 0 and RT-PS=2(1~[~-1)(-2a+c-ab). 

thus the boundary condition has a generalized eigensolu- 
tion at frequency and wavenumber zero and the stability Thus 

condition is violated. Higdon [S], however, has shown that 
this solution is inevitable and does not cause a significant T(B)=~()K)*-l)(-2a+ W(4a-c-ab) 

problem unless there are incompatibilities between the + W*(-2a+c-ab)) 
initial and boundary data. Otherwise, a pair (K, z) which is 
a root of both equations is complex with IKI = IzI = 1 or has real coefficients. Let B,(W) be T(B)/2( JKJ2- 1) and 
z = -1 and K is real, K < 0. In either case K and z have defined by 
arguments of the same sign and so do not lead to 
instability. 1 B, = -2a+eW+fW2, 
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where e=4a-c-ab and f= -2a+c-ab. Then B, is 
Schur, provided that 

y,=4a2-f*>O 

and y3 = (4a* -f *)* - ( -2a -f )’ e2 > 0. Now y2 factors to 
give y2 = (4a - c + ab)(c - ab). Substituting the values of a, 
b, and c, we have 

Y2 = 2PL(COS rl AY - 1 )(P2 - PO421 

X 

( 

4P0 
y - wcos rl AY - 1 NP2 - PO421 

> 
. 

Then, provided that p2 - p0q2 < 0, we require 

&I - P2(COS ? 4 - 1 NJ72 - PO421 ’ 0 

which leads to the condition 

P < JPol(Poq2 - P2). 

Simplifying y3 we have 

y3=(2a-f-e)(2a-f+e) 

which after substitution is 

y3 = 16poqAcos rl AY - 1 N2po - P~P*(COS v  AY - 1)). 

Thus y3 > 0 for q dy # 0, provided that p* -C p0/lp21 and 
p,<Oandq,<O. 

The solutions with B Av = 0 are exactly the same as those 
in Theorem 5.1 and do not lead to instability. 1 

Proof of Theorem 5.4. For (2.17) we obtain an 
quartic in W= z-l, 

B(W)=R+SW+TW2+PW3+QW4, 

where 

R=K-l+a(l+rc), 

S=(c-2)(~-l)+(b+d-4a)(l+rc) 

T=(6a-2b)(l +K) 

P=(2-c)(K-l)+(b+d-4a)(l+~) 

Q=a(l+K)-(K-l), 

operator 

and a = -PO/~ b = -p2p(y - 2 + y-l), c 
q2p2(y-2++y1),andd= -(p4p3/2)(y-2++y1)2. 

The first Schur transform is 

T(B)=IRI*-lQI*+(KS-QF)W+(RT-QT) W* 

+ (i?P - Qs) W3. 

= 

Again y,=4a()rc12-l)>O for pO>O and Irc<l. The 
coefficients of T(B) are 

RS-QP=2(1~1*-l)(ac-6a+b+d) 

RT-QT=2(6a-2b)(lKl*-1) 

and 

which are again real. Thus we find the Schur iterates of 
B,(W)= T(B)/2([1cl’- 1) defined by 

B,(W)=X+ YW+ZW*+ VW3, 

where X = 2a, Y=ac-6a+b+d, Z=6a-26, and 
V = b + d - 2a - ac. Therefore, 

T(B,) = X2 - V* + (XY- VZ) W+ (XZ- VY) W* 

andy,=X*-V2=(4a+ac-b-d)(b+d-ac).Now 

(b + d- ac) = 2(cos q Ay - 1) 

x clCpoq2 - ~2 - P~P*(COS 4 AY - 1 )I 

< 0, 

provided that p0q2 - p2 > 0 and p4 > 0. We therefore need 
4a + ac - b - d < 0 for stability. This means that the 
polynomial in x = p sin( q Ay/2), 

should be negative. This is the case, provided that 

~2+CP2-Po~2+j~Po~2-P2)2+8~o~41~ 
4 

Now 

y3 = (A-2 - v*y - (XZ - vY)* 

= -4a((b+d)(c-2)+2b-ac*) 

x((b+d-4a)(b+d-ac)-2ad). 

The factor (b + d)( c - 2) + 26 - ac2 

= 4p3(cos rl AY - I)* Cqz(poq2 - ~2) + ~4 

- 92 p4p2(cos rl AY - 1 )I 

< 0, 
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provided that p4+qz(p,,q2-p2)<0. Then for y3>0 we 
need (b+d-4a)(b+d-ac)-2ad<O, which means that 
we should have, at least, that (b + d - 4a) > 0, as the other 
terms are negative, hence the condition 

p2+ cP2+Ji5Gzil. 
4 

The expression for y4 = (X2 - I/‘- XZ + VY)’ (X2 - V’) 
(X+ V+ Y+Z)(X- V+Z- Y)simplifiestothecondition 

4d( 8a - 2b - d) > 0. 

Since d < 0, 8a - 2b - d < 0 is required, which is the case for 
p2 < (l/p4)[p2 + J-1. Observe that this bound 
on p is larger than the bound given for y3 and thus y4 > 0, 
provided that y3 > 0. 

In the above we have assumed that q dy # 0. When 
? Ay=O, 

B=(l-z -‘)3 [(ic- l)(l +z-’ )+a(k.+ l)(l -z-l)]. 

Therefore the pair (JC, z) = (1, 1) is a solution and the other 
solutions satisfy (z+ l)/(z- l)= -a(~+ l)/(~- 1). The 
maps --a(~+ l)/(rc--1) and (z+l)/(z-1) take the unit 
circle to the imaginary axis with its interior going to the left- 
half plane and its exterior to the right-half plane. Therefore, 
the only other pairs (K, z) which are solutions have either 
both 1~1 and Iz] > 1 or both 1~1 and Iz] < 1. 1 

Proof of Theorem 5.5. As in (5.4) Eq. (4.10) gives an 
operator quartic in W, 

B(W)=R+SW+TW2+PW3+QW4, 

where 

R=K-l+a(l+rc) 

S=(b-4a)(l +Ic)+(c-2)(rc- 1) 

T=(6a-2b+d)(ic+l) 

P=(b-4a)(l +ic)-(c-2)(+ 1) 

Q=~~(l+rc)-(~-1) 

and a, b, c are defined as in (5.4) but d= 
-~~p’(y-2++~~)~. As in (5.4), yi= (RI’- lQ12>0, 
provided p0 > 0. The coefficients of T(B) are 

RS-QP=2(b-6a+ac)((rc12-1) 

RT-QT=2(6a-2b+d)(lrc12-1) 

KP-Qs=2(b-2a-ac)(IK(‘- 1) 

and thus we only need consider Schur iterates of B,(W) 
again. In this case y2 = X2 - V2 = (b - ac)(4a - b + ac) and 
b-ac=2p(cos q Ay-l)(p,q,-p,)<O when p0q2-p2>0. 
Hence the condition 

P2< 
PO 

PO42 - P2 

for 4a-b+ac= -(2/p)[2po+p2(cos~ AY- l)(p,q,- 
p2)] < 0. From (5.4) 

y3= (X2- If’)‘-(XZ- v-Y)2 

= (4a(bc - ac2 - d)((4a - b)(b - UC) + ad) 

and bc - ac2 - d < 0, provided that p4 + q2(p0q2 - p2) < 0. 
Then y3 > 0 provided that (4a - b)(b - UC) + ad > 0, which 
gives the condition 

p2< (P2-Po42)Po 

POP4 + P2(Poq2 - P2) 

for p. p4 + p2(poq2 - pz) < 0. 
Now the sign of y4 depends on the sign of (X + V + Z + 

Y)(X- V+ Z - Y) which depends on d( 16a - 4b + d). 
Since d= -4p4p3(cos q Ay - l)* is negative when p4 > 0, 
16a- 4b + d must also be negative. The polynomial in 
x = ,U sin(q Ay/2), f(x) = p. + p2x2 + p4x4 must then be 
positive, which it is whenever pi - 4p,p, < 0 or p2 < 
C -p2 - d-112~~ and P: -4~~ p4 > 0. 

The case when g Ay = 0 is exactly the same as in 
Theorem 5.4. 1 

In the above proofs we have not considered roots which 
have 11~1 = Iz] = 1. Except in Theorems 5.2 and 5.3, we can 
solve for K to get an expression K = -$2/a, for z = eis, where 
?CJ = L2(eie). Therefore llcl = 1, arg K = 2 arg Sz + n and, if 
n = x + i? sin 8, arg L2 = tan- ’ (3 sin e/x). This means that 
if y = j sin 8, and x are of the same sign, arg K is negative, 
whereas if y and x are of different sign, arg rc is positive. 
Therefore if j and x have the same sign, the sign of arg K is 
different to the sign of arg z, which means that generalised 
eigensolutions may exist. 

Furthermore, the reflection coefficient for IKE 1 = ]K~ I = 
Iz] = 1 is given by IB(K~, z)/B(lc,, z)], where rci = K2. Thus 
for 

where pi = e’@. Therefore, 

[RI*= 
2 )f2;22+Q2eCi4+i22eid 

2 IQ12+B2e-‘~+Q2ei4 

<1 
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if and only if 8 sin t3Jx < 0. We conclude that generalised 
eigensolutions have [RI < 1 if they exist. 

For method (2.15) the analysis is similar. We can show 
that IC = 52/a and therefore arg IC = 2 arg 0. Thus for R = 
,? cos 612 + ij sin 012, generalised eigensolutions may exist 
for @ < 0. Furthermore, since in this case B= rcfi -Q, 
generalised eigensolutions which exist will again have 
[RI < 1. 

To determine whether these generalised eigensolutions 
exist, we need to find Sz for each of the cases considered. 
For Eq. (2.12), Q= -(~+l)e’~+2(a-~)+(l-~)e~‘~ 
and J= -2, x= -2a cos tl+2(a-8). Now jj<O and 
x can take either sign. Thus unstable generalised eigen- 
solutions with IRI < 1 may exist. For Eq. (2.15) we 
obtain Q = 2 cos 3012 + 2(b - 1) cos ,912 + 2iu sin 3812 - 
2i(3a - c) sin e/2, and thus R = 2[b - 4 sin’ 0/Z] and jj = 
2(c - 4a sin2 O/2), which again can take different signs. 
The method given by (2.17) may also have generalised 
eigensolutions with [RI < 1, since 

+ 6a - 26 + 2i sin 8(4 sin* 8/2 - c). 

Finally, for (4.10) Q = 2a cos 20 + 2(b - 4~) cos 8 + 6a - 
2b + d + 2i sin 8(4 sin2 f3/2 - c) and, again, generalised 
eigensolutions with IRI < 1 may exist. Observe that Renaut 
and Petersen [16] also demonstrated that method (2.10) 
may allow generalised eigensolutions for which I RI < 1. We 
observe that none of these statements are conclusive. We 
have merely shown that generalised eigensolutions may 
exist. Numerical tests were also performed in each case to 
test whether, in the cases where (arg rc) x (arg z) ~0, 
Eq. (2.11) is also satisfied. The numerical search found 
modes satisfying both the boundary equation and the inte- 
rior equation for all of (2.10) (2.12) (2.17), and (4.10). 
Thus we conclude that, in all of these cases, generalised 
eigensolutions exist. For (2.10), however, the only 
generalised eigensolutions that were found were for values 
of p larger than the maximum allowable p. For (2.12) and 
(4.10) we only found generalised eigensolutions for the 
Newman boundary conditions and p = 0.1 or p = 0.3. The 
number of eigensolutions increases as we reduce the 
accuracy requirements in the search, but in every case there 
are significantly more results for the (2.17) method. In this 
latter case more generalised eigensolutions were found for 
p = 0.1, 0.2, or 0.3. 

This just leaves method (2.13) for which IC= 1 + 
i(4a sin’ 812 + 2g/sin t?). Therefore JrcI > 1 and no 
generalised eigensolutions exist. 

6. NUMERICAL COMPUTATIONS 

Here we give the result of some numerical tests which 
were designed to test and compare the boundary - 0.52)2. This is similar to the test used 

by Higdon, but we used a sharper Gaussian in order that 
the support of the initial condition is a smaller domain. 
Initially a less sharp Gaussian was used, but we found that 
the domain on which we calculated the soslution needed to 
be significantly larger in order to keep the support of the 
initial condition away from the boundary. This led to 
prohibitive costs of computing when we attempted to follow 
the solution to look for instability. Initial tests, however, 
using a less sharp Gaussian did not show any signs&ant 
differences to the results which we will report here. 

To test stability we computed solutions to the wave 
equation on the domain 

At x = 0.52 and y = 0 we imposed symmetry so that these 
boundaries could be ignored. Tests were run so that waves 
did not reach the boundary with y = -80 and so that waves 
reflected from x= -80 could not influence the results. 
This also means that there are effectively no corners in 
the problem which, as demonstrated by Engquist and 
Majda [3], can influence the stability of the problem. It was 
our intent here to test the stability limits derived in 
Section 5, which do not include any analysis of corner 
interactions. The effects of corners on stability will be 
investigated in later work. We then compared these 
solutions with solutions found on the domain 

Cl,= {(x, y) :O<x<O.52,-8O<y<O}, 

where we imposed various boundary conditions at x = 0. 
The computations thus test the reflection properties of the 
boundary conditions at x = 0, without interference from any 
other boundary. The regions Q, and Q, are large so that 
instabilities are given long enough to develop. It is our 
experience that instabilities may not show up on the usual 
smaller test regions. L,-norms of the reflection on 52, by 
subtracting the supposedly accurate solution on Q,, were 
calculated at regular time intervals. Instability was noted 
when these reflections grew unboundedly with time. Note 
here that what we are thus measuring is instability in the Lz 
norm rather than GKS stability which is concerned with 
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stability as At --, 0. In fact the GKS stability permits 
exponential growth of solutions and, thus, an unbounded 
L,-norm as t + +cc does not necessarily imply GKS 
instability, although linear growth in the number of time 
steps as At + 0 would imply GKS instability. The GKS 
stability requirement is, however, more stringent than L, 
stability and Trefethen [20] has also demonstrated that 
most GKS unstable difference schemes are also susceptible 
to unstable growth in the L,-norm. Furthermore, in [S] it 
is conjectured that GKS stability implies L,-stability. 
Results of these tests are summarized in Table III, where we 
give the range of Courant values for which each boundary 
condition studied in Section 5 may be stable. If a lower 
bound is not given, it is assumed to be zero. We also tested 
the Lindman condition and did not observe any instability 
for p < l/$, the bound on p for stability of the interior 
scheme. 

From Table III we see that the theorems of Section 5 
accurately predict the maximum Courant number that can 
be used for a stable result. Since in all cases, where Table II 
predicts that the bound on p due to the boundary is less 
restrictive than that due to the interior, stable results are 
achieved with ,u = 0.7, near the l/J’? bound. But, where 
Table II predicts a more restrictive bound on p, this is 
reflected in the values in Table III. Method (2.17), however, 
exhibits instability for small Courant numbers. It is clearly 
unstable at p = 0.1 in all cases but the growth in error for 
p = 0.2 is slow. In Section 5 we showed that generalised 
eigensolutions might exist in all cases except (2.13). Their 
existence was confirmed except for (2.15) by numerical 
search. 

Although the existence of generalised eigensolutions must 
explain the unstable behaviour observed in (2.17) at p = 0.1, 
clarification of the apparently stable or only marginally 
unstable behaviour in other cases is required. For example, 
(2.17) exhibits generalised eigensolutions for ,D = 0.7 as do 
(4.10) and (2.12) for p =O.l and ~=0.3. In these cases 
instability is not apparent, but the boundary conditions are 
not as effective as would be expected from the other results. 
This may be explained by considering the different types of 

TABLE III 

Observed Stability Bounds 

Approximation Approximation 

Chebyshev Newman Chebyshev Newman 
Method Padt: L,‘ points L* C-P points L” Method Padi Lp points L* C-P points L’ 

2.10 0.7 0.7 0.65 0.67 0.58 0.5 0.5 2.13 6.31 6.40 7.64 7.49 7.94 10.19 8.25 
2.12 0.7 0.7 0.7 0.7 0.7 0.7 0.7 2.10 3.66 3.66 4.04 3.97 4.32 4.87 4.90 
2.13 0.7 0.7 0.7 0.7 0.7 0.7 0.7 2.12 1.68 1.60 1.37 1.28 1.58 4.32 1.89 
2.15 0.7 0.7 0.7 0.7 0.7 0.7 0.7 2.15 1.17 1.07 0.81 0.79 0.79 1.13 1.13 
2.17 0.3-0.7 0.3-0.7 0.34.7 0.3-0.7 0.3Go.7 0.3-0.7 0.34.7 2.17 1.07 2.61 5.27 6.50 6.47 6.40 6.45 
4.10 0.7 0.7 0.7 0.7 0.7 0.7 0.7 4.10 0.88 0.76 0.80 0.82 0.84 0.83 0.86 

Lindman 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Lindman 0.79 

GKS instability that can occur. In Trefethen [22] it is 
shown that for the first-order hyperbolic equation the 
violation of the GKS stability criterion can cause mild 
instabilities in which the solution grows linearly in, or as the 
square root of, the number of timesteps. The minimum 
growth rate is determined by whether the solution is forced 
by boundary data or just by the initial condition. Further- 
more, infinite reflection coefficients compound the problem. 
Finite reflection coefficients and zero boundary data 
produce the mildest instability. In the tests we performed, 
not only was /RI < 1 but it satisfied (RI < 1. Also, there was 
no applied forcing at the boundary. We might, therefore, 
expect to see only mild instabilities in all cases. This is not 
observed; the amplification is much more severe in a few 
cases. This difference may occur, for example, because there 
are more generalised eigensolutions which cumulatively 
contain more energy and, thus, cause greater amplification. 

The second set of computations was designed to compare 
the effectiveness of stable boundary conditions, ignoring the 
effects of corners. The initial condition was defined by (6.1) 
but with r = (x - 0.5)’ + y’. Solutions were found on the 
domains 

Q1={(x, y):-l<x<2,-2<y<2) 

TABLE IVa 

Maximum Reflection on Time Interval G1.96 
as a Percentage of the Initial Energy 

Approximation 

Chebyshev NWttMtl 
Method Padk L$ points L2 C-P points L” 

2.13 15.37 15.49 17.50 17.23 18.02 22.90 18.59 
2.10 7.63 7.56 6.96 6.99 7.04 7.62 7.53 
2.12 4.80 4.60 2.52 2.56 3.06 10.14 4.53 
2.15 2.74 2.10 1.49 1.51 1.72 2.46 2.34 
2.17 1.28 3.30 6.83 10.51 10.59 14.49 16.29 

4.10 1.71 1.18 1.24 1.38 1.42 1.66 1.81 
Lindman 1.23 

TABLE IVb 

Final Reflection at Time 1.96 as a 
Percentage of Initial Energy 
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and Q,= {(x, y):O<x<2,-2<y<2}. A time interval 
0 6 t d 1.96 was actually used in the numerical computa- 
tions. In this time the wave reaches the boundaries 
at x = - 1, x = 2, and y = &2. Thus the measurements 
were actually on the smaller domain defined by 
{(x, y) : 0 <x d 1, -1.52 d y < 1.52). In this way the 
reflection due to the x = 0 boundary was determined. 

We carried out calculations using all of the boundary 
conditions described in Section 2 so that we could see how 
the order of the approximation affected the reflection. For 
the second-order approximations this also tested how the 
order of the difference operator influences the effectiveness 
of the operator. Then we also tested the Higdon operator 
which interpolated at either two or three angles chosen to lit 
with k = 2 or k = 3 approximations of Section 2. For each of 
these we also compared results for a = b = 4 and a = b = i. 
Finally we compared reflections with the Lindman bound- 
ary condition which has the smallest theoretical reflection 
coefficient of all schemes considered here. In each case we 
found the maximum amount of reflection in the time inter- 
val 0 < t < 1.96 and the amount of reflection at the end of 
the run. These values, for a Courant number of p = 0.7, are 
given in Tables IVa, IVb, Va, and Vb where the methods of 
Section 2 are given in Table IV and the Higdon schemes in 
Table V. Tests were made for Courant numbers between 0.1 
and 0.7 in steps of 0.1. Here we present results for p = 0.7, 

TABLE Va 

Maximum Reflection on Time Interval C&l .96 
as a Percentage of Initial Energy 

Approximation 

Chebyshev Newman 
Method Padi: -X= points LZ C-P points L” 

p=2 
act,=’ 
&,=f 

4.19 4.51 3.90 3.53 5.04 12.69 7.12 
5.07 4.51 2.64 2.61 3.44 11.22 5.33 

p=3 
o=b=? 
axb=t 

9.16 9.18 8.17 8.05 7.85 7.70 7.65 

2 3.15 2.31 1.15 1.78 2.16 3.30 2.41 

TABLE Vb 

Final Reflected Energy at Time 1.96 
as a Percentage of Initial Energy 

Approximation 

Chebyshev Newman 
Method Pad& L,” points L2 C-P points L” 

p=2 
a=b=f 2.06 1.96 1.99 1.84 2.43 5.75 3.15 
o=b=f 1.60 1.52 1.33 1.24 1.60 4.42 2.01 

p=3 
a=b=; 3.65 3.41 3.03 2.96 2.90 2.88 2.81 
a=b=’ 2 1.21 1.08 0.12 0.61 0.70 1.26 1.10 

because there was no appreciable difference in the 
comparison at different Courant numbers. The numbers 
given represent the percentage of energy reflected relative to 
the initial energy on Q,. 

Table IVa compares the maximum reflection of the 
rational approximation methods. The first-order approxi- 
mation ( 2.13) to the second-order paraxial approximation 
is clearly less effective than either of the second-order 
approximations. The new second-order stencil (2.12) is also 
better than (2.10) with the error reduced by about 5&60 % 
in most cases. From Table IVb we can see that the final 
error is also reduced by about the same amount. Method 
(2.15) represents about a 40% improvement over (2.12) and 
(4.10) reduces the maximum error that occurs yet further. If 
we compare the final error, however, we see that in some 
cases (2.12) performs a little better than (4.10). Clearly the 
discretization (2.17) of the k = 4 methods is not effective. 
Finally, observe that the Lindman method performs just a 
little better than k = 4 except for the Lr approximation. 

Tables Va and Vb compare the Higdon operators using 
either a = b = f or a = b = 4, The interpolating angles are 
chosen to be the same as the interpolating angles of the 
equivalent approximations. In almost all cases the choice 
a = b = 4 gives least error. Comparing (2.12) and p = 2, 
a = b = $, we see that either implementation is satisfactory, 
the results are very close. With three points of interpola- 
tion (2.15) is a little better, in general, than the Higdon 
operator. Observe, however, that the final error is minimal 
for the p = 3 Higdon operator when compared with the L2 
and Chebyshev approximations. 

7. CONCLUSIONS 

In this paper we have demonstrated how absorbing 
boundary conditions derived from approximations to the 
one-way wave equation may be discretised. A technique 
based on the Schur criteria can be applied to obtain 
necessary conditions for GKS stability. Numerical 
experiments reported in Section 6 confirm these upper 
bounds on p. The existence of wavelike solutions which can 
cause instability is determined by numerical search. Their 
effects are seen in varying degrees in the numerical tests. 
From these tests we conclude that our approach for finding 
difference approximations, which is based on Lindman’s 
ideas, leads to methods which exhibit few wavelike solutions 
compared to a difference approximation derived in a direct 
manner. In fact, wavelike solutions are only evident for 
small values of p and the Newman boundary conditions. We 
conclude that Eq. (2.15), (2.10), and (2.13) can be used for 
all p, and (4.10) and (2.12) for all ,U excluding the Newman 
case. 

From the comparison of the effectiveness of the methods, 
we conclude that the order of the approximation is impor- 
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tant for reducing the maximum error that occurs. It 
appears, however, that the final error is not significantly 
reduced by increasing k. The reduction of the maximum 
error is important in practice. There is really little to choose 
between Higdon’s operators and the rational approxima- 
tion approach for k = 2. The k = 3 results indicate that the 
rational approximation approach may be preferable when 
we increase the number of points of interpolation. 
Lindman’s scheme is really no better than some of the k = 4 
operators. In particular, Lindman’s method performs a little 
worse than the (4.10) discretisation for the L,” approxima- 
tion and a little better than the (4.10) discretisation for the 
approximation using Chebyshev points. It may, however, be 
possible to design schemes to the inverse square root that 
out perform the approximations to the square root. This is 
a problem that we will consider in the future. We note, also 
that Lindman’s scheme is stable but not, we believe, because 
lb, 1 < 1 as stated in [ 141. We have looked at simpler 
Lindman schemes and derived stability conditions which do 
not require 1 pi 1 < 1. 

Note that our computations reported here were not 
intended for comparison between approximations. It has 
already been demonstrated by Renaut and Petersen [16] 
that the theoretical reflection coefficients accurately predict 
the numerical results when the difference operator is stable. 
Therefore the choice of approximation should be deter- 
mined by the range of angles for which good absorption is 
required. For a given approximation, low or high order 
implementations are possible. Since the high order 
implementation, k = 4, requires only a little more computa- 
tion than the k = 2 case and, because the increased order 
improves the effectiveness of the absorbing boundary 
significantly, the k = 4 should, in general, be chosen. It 
is assumed that implementations based on Lindman’s 
approach be chosen because of their better stability 
properties. 
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